

FLIR Detection

FLIR Detection safeguards people and property by providing tools that see and sense harmful substances

Classes of Harmful Substances

- Biological Threats
- Chemical Warfare Agents
- Toxic Industrial Chemicals
- Explosives
- Drugs (illegal, designer, and prescription)
- Pollutants
- Environmental Contaminants
- Radioactive Materials

Applications

- High consequence, checkpoint threat screening
- · Reconnaissance and intelligence
- · Emergency response
- Forensic analysis
- First responder threat screening
- Remediation and prevention

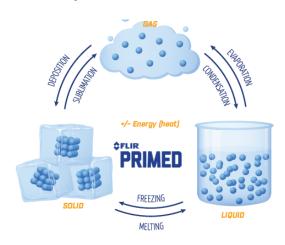
Chemical Analysis in the Field

"Chemistry happens outside the lab...so should the analysis"

Outside-the-Lab GC/MS: Missions

Mobile Lab

Downrange



Outside-the-Lab GC/MS: Spec-Driven Decisions

- GC/MS is gold standard for chemical analysis and can provide high fidelity data for data-driven decisions
- Size, weight, and power appropriate for a portable system
 - Weight analysis → single person portable
 - Power budgeting and management → mission compatible run-times

Actionable data

- Easily interpreted and comparable → NIST matchable data from quadrupole mass analyzer
- Capability to detect and identify analytes from all chemical phases
 - Liquid sample capability
 - Solid sample capability
 - High-fidelity vapor identification capability
 - Real-time vapor sampling capability

FLIR Griffin G510 Key Features

PORTABLE MINI-LAB

- Analyze all phases of matter (liquid, solid, vapor) in the field
- Quickly identify and confirm chemical hazards using standard NIST database
- Operate in the Hot Zone while wearing full personal protective equipment (PPE)
- Completely self-contained vacuum system, batteries, and carrier gas
- IP65-rated, dust-tight and spray-resistant, for simpler decon

Analyze Solid, Liquid, and Vapor Samples

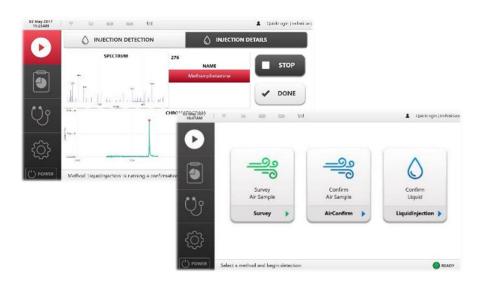
Ultimate in-field sampling flexibility and NO MORE SERVICE MODULES!

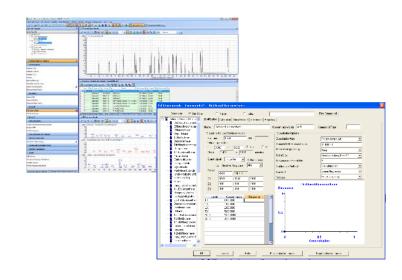
The integrated split/splitless injector allows for environmental, forensic, and hazardous material sampling via syringe injection of organic liquids

Touchscreen Operation While Wearing Full PPE

It's self-contained! You can take it anywhere, including downrange.

IP65-rated, dust-tight and spray-resistant


9" on-board touchscreen with automated user controls, WIFI, & GPS



Hot-swappable batteries, up to 2 hourbattery life Confirm Mode or 4 hours Survey Mode

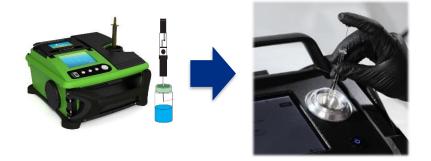
Lab Quality GC/MS Any Responder Can Use

Scientists will love the lab-quality capability – responders will love that you don't need a Ph.D. to use it!

GSS Touch Interface

Analyze unknowns using NIST library and automatically confirm chemical identity. Visual & audible alarms provide confirmation and minimize data interpretation.

Traditional Lab Interface


G510: Advancing the Industry

Completely integrated pumping system Why do I have to buy a service module?

Quadrupole mass analyzer
I need the broadest library for unknown analysis.

Integrated liquid sample injector

SPME is too fragile and time-consuming.

Industry-first IP65 rating
I want my GC/MS to decon like my other response tools.

G510: Vapor Analysis

Provides high-fidelity vapor identification and real-time sampling with alarming capability for both modes

- Sorbent preconcentration with GC-MS analysis for high-fidelity vapor identification
- Membrane-inlet MS (MIMS) for real-time vapor analysis
- Heated sample line with sampling head

G510: Vapor Analysis (Survey Mode)

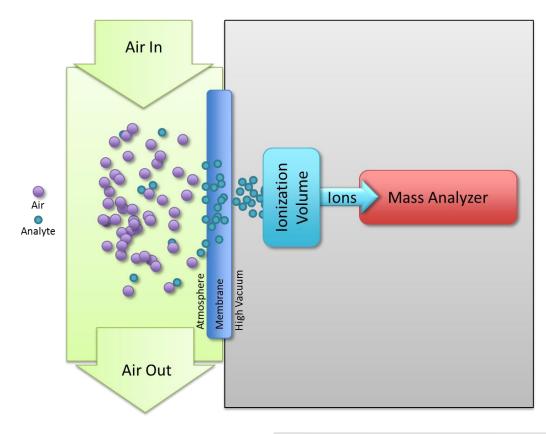
Vapors are drawn into Heated Sample Line

- Sample pump built into unit
- Heated to prevent sample loss to walls and to limit carryover

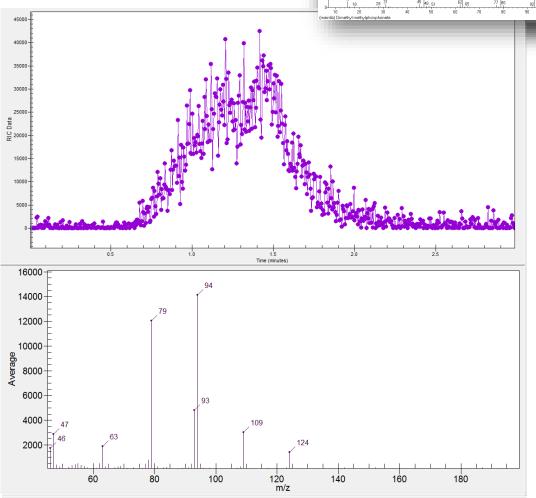
\$FLIR

Rapid, near real-time detection

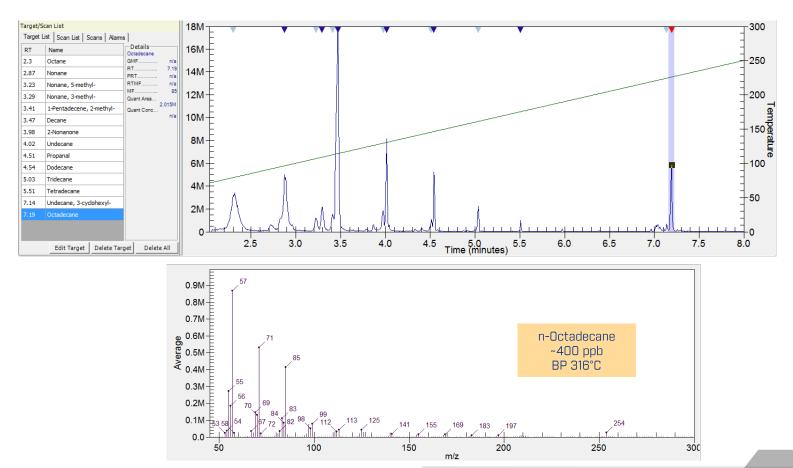
- Detection in seconds, not minutes
- Substantially increases sample resolution


During Survey Mode operation, carrier gas consumption is significantly reduced

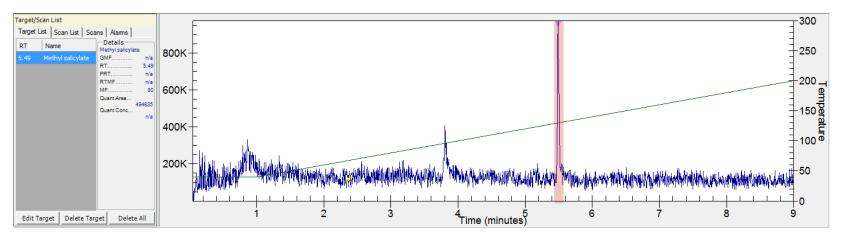
 Lowers cost of ownership – cylinder can last >2 weeks of continuous operation

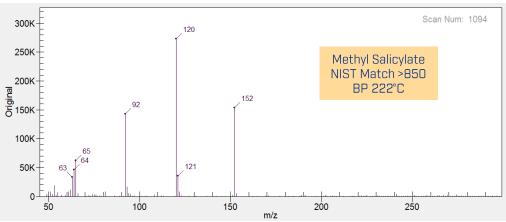

G510: Vapor Analysis (Survey Mode)

- MIMS Sampling
- Real-time vapor analysis and alarming for vapor samples
- Used in conjunction with sorbent preconcentration evaluate vapor threats


G510: Vapor Analysis (Survey Mode)

- MIMS Sampling
- TICs and CWAs
- Toluene
 - -TIC
- Methyl Salicylate
 - CWA Simulant
- DMMP
 - CWA Simulant


G510: Vapor Analysis (Confirm Mode)


- Sorbent preconcentration
- Sample of headspace of sample of n-octadecane (99% purity) showing octadecane and various semi-volatile impurities in sample

G510: Vapor Analysis (Confirm Mode)

- Sorbent preconcentration
- Sample of methyl salicylate vapor (CWA simulant) at ppb levels

G510: Liquid and Solid Analysis (Confirm Mode)

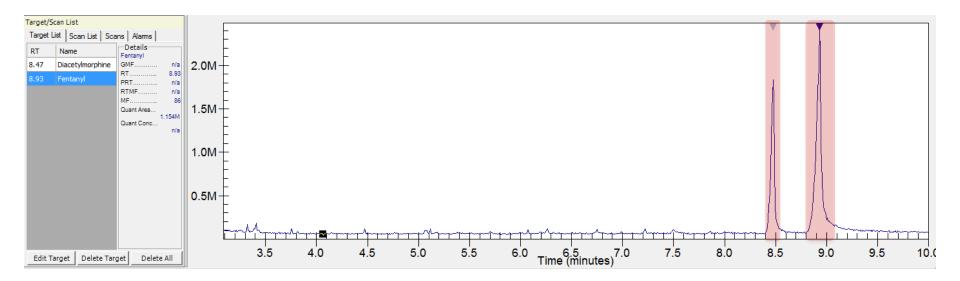
Capability to sample solids, liquids, and gases

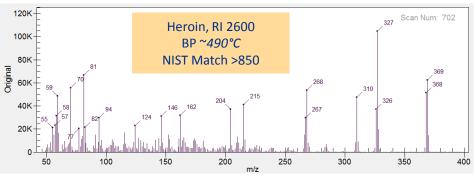
Use of standard split/splitless injector enables user to analyze wide range of samples in a similar manner to lab GC/MS systems

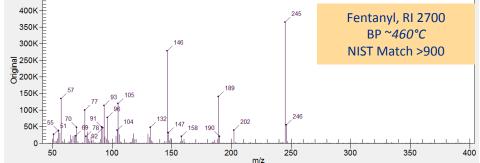
 Compatible with standard syringe liquid injections, solid-phase micro extraction (SPME), and head-space syringe samples

Solid sample injector adapter

Use of helium carrier gas to maximize performance of GC


- Low thermal mass GC column
- 100°C/min up to 300°C

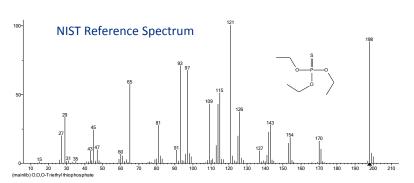

Carbon			E 00	C10	C12	C14	C16	C18	C20 C2	22	4 C36 - C	300
Number	Paraffin Name	BP (°C)	E C9			014	610	CIO	L2U L2		4 620	
C9	Nonane	150	1 <u> </u>					ı] 250
C10	Decane	174	1 <u>E</u>									1
C12	Dodecane	216	<u> </u>									200 _
C14	Tetradecane	254]E									150 en
C16	Hexadecane	287] [1			+ 150 eg
C18	Octadecane	316]E							1		100 0
C20	Eicosane	344					1 —					100%
C22	Docosane	369	<mark>Sarin</mark>				VX				Heroin	- 50
C24	Tetracosane	391	1 <u> </u>									
C26	Hexacosane	415	may a polysome	man harman	<u> </u>	handrade and the handrades			<u> </u>	<u> </u>	manufactured books and manufactured	O O
C28	Octacosane	432	2	3	4 5	6	7 8 Time (minute	es) 9	10	11	12 13	14


G510: Liquid and Solid Analysis (Confirm Mode)

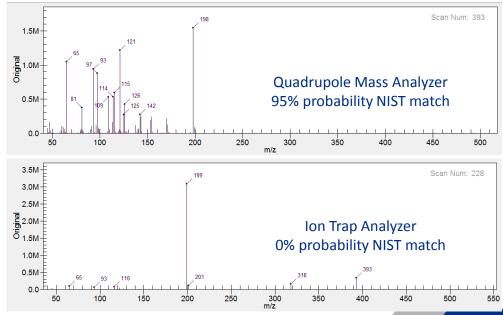
Liquid Injection

Drugs of abuse (mix of heroin and fentanyl)

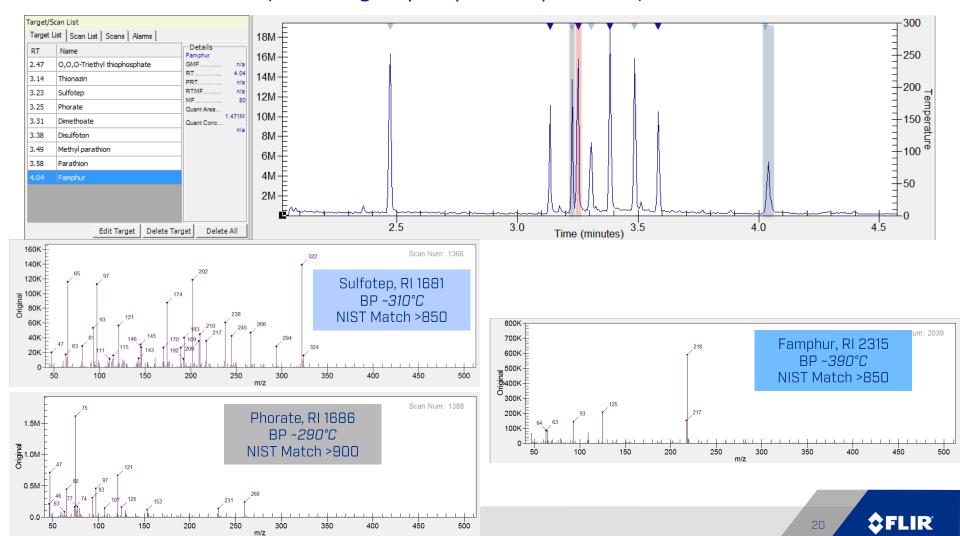
G510: Quadrupole Mass Analyzer


High fidelity mass spectral data that can be easily matched/compared to library of known compounds

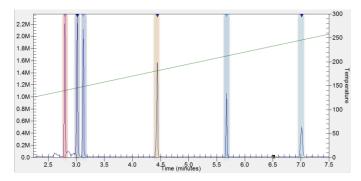
 NIST mass spectral library: >240,000 compounds analyzed by EI MS with a quadrupole mass analyzer

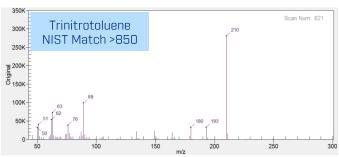

Ion trap analyzer vs. quadrupole mass analyzer

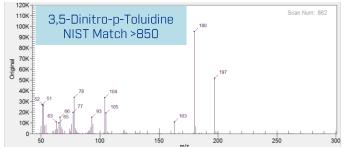
- Ion trap: easy to miniaturize but spectra can be concentration dependent
- Quadrupole: spectra more reproducible but can be difficult to make portable

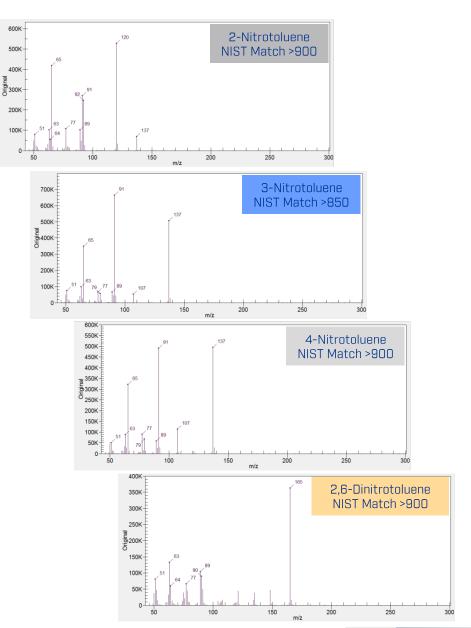


50 ng Triethylphosphorothioate


G510: Environmental Analysis


- Liquid Injection
- EPA 8270P mixture (mix of organophosphorous pesticides)

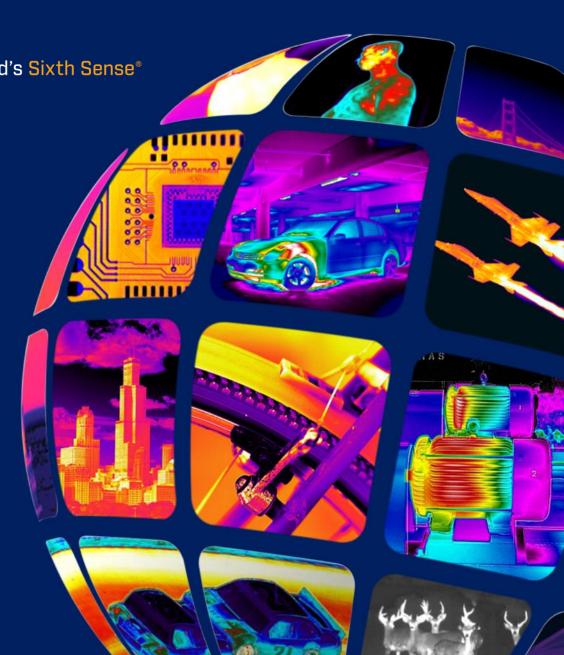



G510: Explosives Analysis

- Liquid Injection
- Explosives mixture

Summary

- Identified and responded to the need for advanced, portable downrange GC/MS system
- Supporting industry has responded with significant advancements
 - Pumps
 - Electronics
- Achieved balance of performance, SWaP, and cost while maintaining operability in challenging environments



The World's Sixth Sense®

Thank you

Philip Tackett, Ph.D. **Product Manager**

philip.tackett@flir.com

